

Journal of Organometallic Chemistry 528 (1997) 15-18

Reactions of $[Cp_2Ti(N^{T}Bu)(py)]$ with S-H bonds and synthesis of $[Cp_2Ti(\mu-S)_2TiCp_2]^{-1}$

Philip Mountford *

Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK

Received 7 February 1996; in revised form 10 April 1996

Abstract

The imidotitanocene complex $[Cp_2Ti(N^{T}Bu)(py)]$ reacts with an excess of H_2S or MeSH to form $[Cp_2Ti(SR)_2]$ (R = H or Me). The labile bis(μ -sulfido) complex $[Cp_2Ti(\mu-S)_2TiCp_2]$, formed as an intermediate in the reaction of $[Cp_2Ti(N^{T}Bu)(py)]$ with H_2S , is also obtained by addition of one equivalent of $[Cp_2Ti(SH)_2]$ to $[Cp_2Ti(N^{T}Bu)(py)]$.

Keywords: Titanium; Imido; Cyclopentadienyl; Sulfido; X-ray diffraction; Bimetallic

1. Introduction

The study of early transition metal imido complexes is an area of continuing interest [1] and significant advances have been achieved with imido-transition metal fragments supported by bis(cyclopentadienyl) ligand sets [2-5]. However, terminal imidotitanium complexes were first fully characterised only in 1990 [6,7] and their chemistry is underdeveloped by comparison with their zirconium congeners [1]. We have recently reported a new route to mono(cyclopentadienyl) and bis(cyclopentadienyl) imidotitanium complexes and are exploring their potential as entry points to new cyclopentadienyl titanium derivatives [8]. Mid to late transition metal imido complexes can react with the S-H bond(s) of H₂S, thiols and bis(hydrosulfido) metal derivatives giving new routes to terminal sulfido, bis(hydrocarbyl sulfido) and homo- and hetero-bimetallic bis(μ -sulfido) complexes [9-11]. Reactions of Group 4 imido derivatives towards S-H bonds have not been reported. This contribution describes some S-H bond activation reactions of [Cp₂Ti(N^tBu)(py)] and the synthesis of the labile complex $[Cp_2Ti(\mu-S)_2TiCp_2]$.

2. Results and discussion

When an excess of H_2S was added to a dichloromethane solution of $[Cp_2Ti(N^{\dagger}Bu)(py)]$ (1) [12] the solution immediately became very dark red and then turned light red after a few moments. Removal of the volatiles under reduced pressure afforded the spectroscopically pure bis(hydrosulfido) complex $[Cp_2Ti(SH)_2]$ (2), which has previously been obtained from $[Cp_2TiCl_2]$ and H_2S [13]. It was of interest to identify the dark red intermediate in the reaction of 1 with H_2S . Initial studies were carried out using a series of NMR tube experiments in C_6D_6 .

Addition of an excess of H_2S to a C_6D_6 solution of $[Cp_2Ti(N^*Bu)(py)]$ (1) gave a light red solution exhibiting resonances assignable to free py, 'BuNH₂ and $[Cp_2Ti(SH)_2]$ (2) in an equimolar ratio. No other products were observed. The reaction was then repeated using ca. 1 equivalent of H_2S and the dark red solution formed immediately. The ^TH NMR spectrum showed new resonances assignable to free 'BuNH₂ and py, together with a singlet ($\delta = 6.51$ ppm) assigned to an intermediate species, **3**. No other new resonances were observed. Addition of an excess of H_2S to this mixture gave an equimolar mixture of only free py, 'BuNH₂ and $[Cp_2Ti(SH)_2]$. Thus the dark red species **3** is very probably an intermediate in the overall formation of **2** from **1** and excess H_2S . The NMR studies showed **3** to

^{*} Corresponding author.

¹ Dedicated to my mentor and teacher, Malcolm L.H. Green FRS, on his 60th birthday.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. *Pll* S0022-328X(96)06385-1

be labile at room temperature, slowly (1-2 h) decomposing to a number of unknown products.

It is proposed (vide infra) that **3** is the new bis(μ -sulfido) complex $[Cp_2Ti(\mu-S)_2TiCp_2]$ (Scheme 1). It is likely that the first formed product in the reaction of $[Cp_2Ti(N^{T}Bu)(py)]$ (1) with H₂S is $[Cp_2Ti(NH^{T}Bu)(SH)]$ (4, not observed by NMR). The compound 4 could rapidly either (i) eliminate ^TBuNH₂ to form transient $[Cp_2Ti(S)]$ (5) which may dimerise via μ -S linkages to form 3, or (ii) react directly with a second equivalent of H₂S to form the bis(hydrosulfido) complex $[Cp_2-Ti(SH)_2]$ (2) which also contains reactive S–H bonds; in the absence of sufficient H₂S, 2 can attack unreacted $[Cp_2Ti(N^{T}Bu)(py)]$ (1), forming 3.

Supporting evidence for the latter possibility is as follows. Firstly, when light red solutions of $[Cp_2Ti(SH)_2]$ (2) and $[Cp_2Ti(N^{T}Bu)(py)]$ (1) (ca. 1:1 molar ratio) in C_6D_6 were mixed together, the resultant dark red solution contained free py and ^TBuNH₂ (intensity 9 H), together with a singlet at $\delta = 6.51$ ppm (intensity 20 H), again assigned to $[Cp_2Ti(\mu-S)_2TiCp_2]$

(3). Thus any $[Cp_2Ti(SH)_2]$ (2) formed in the reaction of $[Cp_{2}Ti(N^{t}Bu)(py)]$ (1) with H₂S can also attack 1. Secondly, when a solution of 1 in C_6D_6 was treated with ca. 1.1 equivalents of MeSH the resultant spectrum showed resonances attributable to unreacted 1, the previously described bis(methyl sulfido) derivative $[Cp_{2}Ti(SMe)_{2}]$ (6) [14] and free py and 'BuNH₂. Three additional minor resonances typical of Cp, SMe and ^tBu groups (ratio 10 H: 3 H: 9 H respectively) were consistent with the formation of the mixed sulfide-amide [Cp₂Ti(N^tBuNH)(SMe)] (7) [15]. Assuming these tentative assignments, the relative molar ratio of 1:6:7 was ca. 3:2:4, and so no attempt was made to isolate 7 on a synthetic scale. Addition of an excess of MeSH to this reaction mixture resulted in the overall quantitative formation of 6 (see Eq. (1)). It is thus very likely that intermediate amido species formed in the reaction of $[Cp_{2}Ti(N^{T}Bu)(py)]$ (1) with RSH can themselves rapidly react with further S-H bonds, forming $[Cp_2Ti(SR)_2]$. Related observations have been made in the reaction of a molybdenum imido system with ^tBuOH [16].

Despite its lability in solution, the bis(μ -sulfido) complex [Cp₂Ti(μ -S)₂TiCp₂] (3) may be isolated in a reasonably pure form and further characterised. Although the NMR tube experiments show that treatment of [Cp₂Ti(N'Bu)(py)] (1) with 1 equivalent of either H₂S or [Cp₂Ti(SH)₂] (2) affords 3, it is the latter

method that is most convenient on a synthetic scale. Thus addition of a THF solution of 1 to a THF solution of 2 (1:1 molar ratio) afforded a dark red solution. Immediate removal of volatiles under reduced pressure followed by rapid precipitation of the product from a THF/hexane mixture afforded 3 as a red-brown pow-

Scheme 1.

der in good yield. The ¹H NMR spectrum of this powder in C₆D₆ showed a single resonance at δ 6.51 ppm and the ¹³C {¹H} NMR spectrum revealed a single resonance at δ 117.1 ppm. The IR spectrum (Nujol mull in the range 4000–400 cm⁻¹) showed no evidence for either an S–H or a Ti=S functional group [17], but was similar to the previously described IR spectra of [Cp₂Ti(μ -X)₂TiCp₂] (X = Cl, Br, I), for which Ti- μ -X absorptions were not observed down to 300 cm⁻¹ [18]. Unfortunately it was not possible to obtain a satisfactory mass spectrum of this material.

The reactions of $[Cp_2Ti(N^{\dagger}Bu)(py)]$ (1) with H_2S , MeSH and $[Cp_2Ti(SH)_2]$ (2) are the first reports of S-H bond activation by a Group 4 metal imido complex. Furthermore, the complex $[Cp_{2}Ti(\mu-S)_{2}TiCp_{2}]$ (3) represents the final "missing link" both in the Group 4 titano- and zirconocene bis(μ -chalcogenido) series [(η - $(C_5R_5)_2 M(\mu - E)_2 M(\eta - C_5R_5)_2$ (M = Ti or Zr; E = S or Se) and in the bis(titanocene) μ -(poly)sulfido series $[(\eta - C_5 H_4 R)_2 Ti(\mu - S_x)_2 Ti(\eta - C_5 H_4 R)_2]$ (x = 1, 2 or 3), which have been the subject of considerable research activity [19–28]. The observation that treatment of solutions of **3** with H_2S affords $[Cp_2Ti(SH)_2]$ is consistent with the behaviour of the crystallographically characterised congener $[Cp_2Zr(\mu-S)_2ZrCp_2]$ [24,26]. The lability of 3 is also consistent with the reported instability of $[Cp_2Zr(\mu-S)_2ZrCp_2]$ in solution [25] and the decomposition of $[(\eta - C_5 H_4 Me)_2 Ti(\mu - S - S)_2 Ti(\eta - C_5 H_4 Me)_2]$ at relatively mild elevated temperatures [22]. It is probably a combination of the thermal lability of 3 and its facile reactivity towards H₂S that has prevented its synthesis previously.

Unimetallic terminal chalcogenido derivatives $[(\eta - C_5R_5)_2M(E)(L)]$ (M = Zr or Hf with E = O, S, Se or Te; M = Ti with E = O; L = py or substituted py) have been described recently [29–31]. No evidence for $[Cp_2Ti(S)(py)]$ was found in the reactions where free pyridine was available. We are currently exploring the reactivity of $[Cp_2Ti(\mu - S)_2TiCp_2]$ (3) towards organic substrates, and the scope of early transition metal imido complexes in general as precursors to otherwise inaccessible materials.

3. Experimental section

Appropriate general experimental procedures used in these laboratories have been described in detail elsewhere [32,33]. $[Cp_2Ti(N^{T}Bu)(py)]$ was prepared by an analogous route to that previously described for $[Cp_2Ti(N^{T}Bu)(4-NC_5H_4^{T}Bu)]$ [8] and full details will be described in a future contribution [12]. H₂S and MeSH were used as received from the Aldrich Chemical Company. The NMR tube experiments were carried out using standard Wilmad 5 mm tubes equipped with Young's NMR/5 valves so that successive aliquots of H_2S or MeSH could be added and NMR spectra recorded of the mixtures at the various stages. Stoichiometric addition of H_2S and MeSH was achieved using a calibrated gas manifold.

3.1. Synthesis of $[Cp_2Ti(SH)_2]$ (2) from $[Cp_2Ti(N'Bu)(py)]$ (1) and H_2S

 H_2S was slowly bubbled through a solution of $[Cp_2Ti(N^1Bu)(py)]$ (1) (90 mg, 0.27 mmol) in dichoromethane (10 cm³) for 2 min. The initially light red solution turned immediately very dark then became light red again. The volatiles were removed under reduced pressure to give a red solid which was identified as $[Cp_2Ti(SH)_2]$ (2). Yield 45 mg, 83%. Samples of 2 prepared this way are pure by ¹H NMR spectroscopy. Spectroscopic data. ¹H NMR (CDCl₃, 250 MHz, 293 K): 6.28 (s, 10 H, Cp), 3.38 (s, 2 H, SH) ppm (Lit. [13] (CDCl₃): 6.28, 3.38 ppm). ¹H NMR (C₆D₆, 250 MHz, 293 K): 5.79 (s, 10 H, Cp), 3.72 (s, 2 H, SH) ppm.

3.2. Synthesis of $[Cp_2Ti(\mu-S)_2TiCp_2]$ (3) from $[Cp_2Ti(N^{\dagger}Bu)(py)]$ (1) and $[Cp_2Ti(SH)_2]$ (2)

To a degassed solution of $[Cp_2Ti(SH)_2]$ (2) (0.13 mmol, generated from 1 and H₂S) in THF (10 cm³) was added $[Cp_2Ti(N^tBu)(py)]$ (1) (42 mg, 0.13 mmol) in THF (15 cm³) affording a very dark red solution. Volatiles were immediately removed under reduced pressure and the residue was redissolved in THF (10 cm³). To this solution was added hexane (10 cm³) and the red-brown solid formed was separated from the supernatant and washed with hexane (2 × 5 cm³) and dried in vacuo. Yield 45 mg, 82%. Analytical data. ¹H NMR (C₆D₆, 300 MHz, 293 K): 6.51 (s, Cp) ppm. ¹³C {¹H} NMR (C₆D₆, 74.5 MHz, 293 K): 117.1 (Cp) ppm. IR (Nujol, CsBr windows): 1261 (m), 1092 (s), 1020 (s) and 801 (vs) cm⁻¹. Anal. Found: C, 55.1; H, 5.0. C₂₀H₂₀Ti₂S₄ Calc.: C, 57.2; H, 4.8%.

3.3. Synthesis of $[Cp_2Ti(\mu-S)_2TiCp_2]$ (3) from $[Cp_2Ti(N'Bu)(py)]$ (1) and H_2S

A solution of $[Cp_2Ti(N^tBu)(py)]$ (11 mg, 0.034 mmol) in C_6D_6 (0.8 cm³) in a 5 mm NMR tube was treated with ca. 1 equivalent of H_2S . The resultant NMR spectrum showed effectively quantitative formation of **3** together with resonances assignable to unreacted **1**, free py and ^tBuNH₂.

3.4. Synthesis of $[Cp_2Ti(SH)_2]$ (2) from $[Cp_2Ti(\mu-S)_2TiCp_2]$ (3) and H_2S

To a solution of **3** in C_6D_6 in an NMR tube (generated in situ according to the above procedure) was added ca. 5 equivalents of H_2S . The NMR spectrum of the reaction mixture revealed 2 as the only organometallic product.

3.5. Synthesis of $[Cp_2Ti(SMe)_2]$ (6) from $[Cp_2Ti(N'Bu)(py)]$ (1) and H_2S

A solution of 1 in $C_6 D_6$ (0.8 cm³) in an NMR tube was treated with ca. 1 equivalent of MeSH. The NMR spectrum of the mixture showed resonances assignable to 1, 6, free py_and 'BuNH₂ together with a further set of resonances assignable to $[Cp_2Ti(NH^*Bu)(SMe)]$ (7). The molar ratio of 1:6:7 was ca. 3:2:4 according to integration. Addition of an excess of MeSH to this mixture afforded 6 as the sole organometallic product, together with free py and 'BuNH₂. Analytical data. ¹H NMR (C_6D_6 , 250 MHz, 293 K) for $[Cp_2Ti(SMe)_2]$ (6): 5.85 (s, 10 H, Cp), 2.84 (s, 6 H, SMe). ¹H NMR (C_6D_6 , 250 MHz, 293 K) for $[Cp_2Ti(NH^*Bu)(SMe)]$ (7): 5.83 (s, 10 H, Cp), 2.67 (s, 3 H, SMe), (1.29, 9 H, N^{*}Bu) ppm (NH not identified).

Acknowledgements

Thanks are extended to the Royal Society for an equipment grant, Nottingham University for partial support, Mr. S.C. Dunn for the synthesis of $[Cp_2-Ti(N^tBu)(py)]$ and a referee for helpful comments.

References and notes

- [1] D.E. Wigley, Progr. Inorg. Chem., 42 (1994) 239.
- [2] J.C. Green, M.L.H. Green, J.T. James, P.C. Konidaris, G.H. Maunder and P. Mountford, J. Chem. Soc., Chem. Commun., (1992) 1361.
- [3] G. Parkin, A. van Asselt, D.J. Leahy, L. Whinnery, N.G. Hua, R.W. Quan, L.M. Henling, W.P. Schaefer, B.D. Santarsiero and J.E. Bercaw, *Inorg. Chem.*, 31 (1992) 82.
- [4] P.J. Walsh, F.J. Hollander and R.G. Bergman, Organometallics, 12 (1993) 3705.
- [5] K.E. Meyer, P.J. Walsh and R.G. Bergman, J. Am. Chem. Soc., 116 (1994) 2669.
- [6] H.W. Roesky, H. Voelker, M. Witt and M. Noltemeyer, Angew. Chem., Int. Ed. Engl., 29 (1990) 669.

- [7] J.E. Hill, R.D. Profilet, P.E. Fanwick and I.P. Rothwell, Angew. Chem., Int. Ed. Engl., 29 (1990) 664.
- [8] S.C. Dunn, A.S. Batsanov and P. Mountford, J. Chem. Soc., Chem. Commun., (1994) 2007.
- [9] M.L.H. Green, G. Hogarth, P.C. Konidaris and P. Mountford, J. Chem. Soc., Dalton Trans., (1990) 3781.
- [10] R.I. Michelman, G.E. Ball, R.G. Bergman and R.A. Andersen, Organometallics, 13 (1994) 869.
- [11] D.A. Dobbs and R.G. Bergman, Inorg. Chem., 33 (1994) 5329.
- [12] A.J. Blake, K.A. Butakoff, S.C. Dunn, P. Mountford and D.A. Robson, in preparation (further details available on request).
- [13] A. Shaver, J.M. McCall and G. Marmolejo, *Inorg. Synth.*, 27 (1990) 65.
- [14] T.A. Wark and D.W. Stephan, Organometallics, 8 (1989) 2836.
- [15] The related zirconocene tert-butylamide-alkoxide derivative [Cp₂Zr(NH¹Bu)(O¹Bu)] has been fully characterised: A.M. Baranger and R.G. Bergman, J. Am. Chem. Soc., 116 (1994) 3822.
- [16] D.L. Morrison and D.E. Wigley, J. Chem. Soc., Chem. Commun., (1995) 79.
- [17] For comparison the IR spectrum of $[Cp_{2}^{*}Ti(SH)_{2}]$ shows a $\nu(S-H)$ band at 2580 cm⁻¹ and a $\nu(Ti-S)$ band at 330 cm⁻¹ [24]; the IR spectrum of the terminal sulfido complex [(tmtaa)Ti(S)] shows a $\nu(Ti=S)$ band at 545 cm⁻¹ (H₂tmtaa = tetramethyldibenzotetraaza[14]annulene): V.L. Goedken and J.A. Ladd, J. Chem. Soc., Chem. Commun., (1982) 142.
- [18] R.S.P. Coutts, P.C. Wailes and R.L. Martin, J. Organomet. Chem., 47 (1973) 375.
- [19] J. Wachter, Angew. Chem., Int. Ed. Engl., 28 (1989) 1613.
- [20] M. Draganjac and T.B. Rauchfuss, Angew. Chem., Int. Ed. Engl., 25 (1985) 742.
- [21] C.M. Bolinger, T.B. Rauchfuss and S.R. Wilson, J. Am. Chem. Soc., 103 (1981) 5620.
- [22] C.M. Bolinger, J.E. Hoots and T.B. Rauchfuss, Organometallics, 1 (1982) 223.
- [23] D.M. Giolando, T.B. Rauchfuss, A.L. Rheingold and S.R. Wilson, Organometallics, 6 (1987) 667.
- [24] F. Bottomley, D.F. Drummond, G.O. Egharevba and P.S. White, Organometallics, 5 (1986) 1620.
- [25] A. Shaver and J.M. McCall, Organometallics, 3 (1984) 1823.
- [26] W.A. Howard and G. Parkin, Organometallics, 12 (1993) 2363.
- [27] F. Bottomley, T.-T. Chin, G.O. Egharevba, L.M. Kane, D.A. Pataki and P.S. White, *Organometallics*, 7 (1988) 1214.
- [28] P.G. Maué and D. Fenske, Z. Naturforsch., 43B (1988) 1213.
- [29] M.J. Carney, P.J. Walsh, F.J. Hollander and R.G. Bergman, Organometallics, 11 (1992) 761.
- [30] W.A. Howard and G. Parkin, J. Am. Chem. Soc., 116 (1994) 606.
- [31] M.R. Smith, P.T. Matsunaga and R.A. Andersen, J. Am. Chem. Soc., 115 (1993) 7049.
- [32] K.A. Butakoff, D.A. Lemenovskii, P. Mountford, L.G. Kuz'mina and A.V. Churakov, *Polyhedron*, 15 (1996) 489.
- [33] S.C. Dunn, P. Mountford and O.V. Shishkin, *Inorg. Chem.*, 35 (1996) 1006.